Asymmetric monocationic and dicationic gold(II) complexes:
 X-ray structure
 of $\left[\mathrm{MePh}_{2} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuOH}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

M. Concepción Gimeno, Josefina Jiménez, Antonio Laguna and Mariano Laguna
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón,
Universidad de Zaragoza-Consejo Superior de Investigaciones Cientifícas, 50009 Zaragoza (Spain)
Peter G. Jones
Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig (Germany)

R.V. (Dick) Parish

Department of Chemistry, The University of Manchester, Institute of Science and Technology, Manchester M60 1QD (UK)
(Received December 8, 1993)

Abstract

The reaction of $\left[(\right.$ tht $) \mathrm{Au}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}($ tht $)\left(\mathrm{ClO}_{4}\right)_{2}$ (tht = tetrahydrothiophene) with $\left[\mathrm{Ag}_{(}\left(\mathrm{OClO}_{3}\right) \mathrm{PR}_{3}\right]\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$, $\mathrm{PPh}_{2} \mathrm{Me}$ or $\left.\mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}\right)$ gives $\left[\mathrm{R}_{3} \mathrm{PAu}^{\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}(\text { (tht }) \text { }\left(\mathrm{ClO}_{4}\right)_{2} \text {. Displacement of weakly coordinated ligands gives }}\right.$ new dicationic ($\left[\mathrm{R}_{3} \mathrm{PAu}^{\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right)\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{~L}=\mathrm{py}, \mathrm{AsPh}_{3}, \mathrm{PPh}_{2} \mathrm{Me} \text { or } \mathrm{OH}_{2}\right) \text {) or monocationic complexes (}\left[\mathrm{R}_{3} \mathrm{PAu}, ~\right.}\right.$ $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuX}\right] \mathrm{ClO}_{4}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right.$ or $\left.\left.\mathrm{OClO}_{3}\right)\right)$. The structure of $\left[\mathrm{MePh}_{2} \mathrm{PAu}^{2}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}\left(\mathrm{OH}_{2}\right)\right] \mathrm{ClO}_{4}$ was confirmed by single-crystal X-ray diffraction analysis. The ${ }^{197}$ Au Mössbauer spectra of $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}(\right.$ (tht $\left.)\right\}\left(\mathrm{ClO}_{4}\right)_{2}$ is reported and compared with other symmetric or asymmetric dinuclear gold(II) complexes.

Key words: Gold; X-ray structure; Mössbauer; Dinuclear; Ylide

1. Introduction

Most reported binuclear gold(II) complexes containing the bis(ylide) $\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right]^{-}$are neutral compounds of the type [XAu($\left.\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuX}$] (X $=$ anionic ligand) [1-7], and only few examples of monocationic or dicationic complexes are known, e.g. [XAu $\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]^{+}\left(\mathrm{X}=\mathrm{Br}, \mathrm{I}\right.$ or $\mathrm{C}_{6} \mathrm{~F}_{5} ; \mathrm{L}=\mathrm{CH}_{2}-$ PR_{3}, py, tht (tht = tetrahydrothiophene) or PR_{3}) [8,9], $\left[\mathrm{LAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]^{2+}\left(\mathrm{L}=\mathrm{py}\right.$, tht, $\mathrm{PR}_{3}, \mathrm{As}-$ Ph_{3} or SbPh_{3}) [10].

Here we describe the preparation of asymmetric cationic complexes $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]^{2+}$ ($\mathrm{L}=$ tht, OH_{2}, py or PR_{3}) or $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2^{-}}\right.$

[^0]$\mathrm{AuX}]^{+}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right.$ or $\left.\mathrm{OClO}_{3}\right)$ by reaction of $\left[\mathrm{LAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]^{2+}\left(\mathrm{L}=\mathrm{PPh}_{3}\right.$ or tht) with mononuclear gold(I) or silver(I) complexes or with neutral or anionic ligands. The ${ }^{197} \mathrm{Au}$ Mössbauer spectra of some of these confirm the presence of two gold atoms with different chemical environments. The structure of $\left[\mathrm{MePh}_{2} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}\left(\mathrm{OH}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ has been cstablished by single-crystal X -ray analysis. To the best of our knowledge, the only aqua complex of gold previously described is [$\mathrm{AuMe}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{OH}_{2}\right)$] [11].

2. Results and discussion

The reaction of $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right) \mathrm{PR}_{3}\right] \quad\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$, $\mathrm{PPh}_{2} \mathrm{Me}$ or $\left.\mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}\right)$ with [(tht)Au($\mathrm{CH}_{2} \mathrm{PPh}_{2}{ }^{-}$ $\left.\mathrm{CH}_{2}\right)_{2} \mathrm{Au}($ tht $)\left(\mathrm{ClO}_{4}\right)_{2}$ in dichloromethane (1:1 molar
ratio) leads to ligand exchange and precipitation of $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)(\right.$ tht $\left.)\right]$ and the asymmetric cationic complexes 1-3 can be isolated from the resulting solutions (see Scheme 1).

Complex 1 is also obtained from $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{3}\left(\mathrm{CCO}_{4}\right)_{2}$ by reaction with [$\mathrm{Au}-$ $\left(\mathrm{PPh}_{3}\right)($ (tht $\left.)\right] \mathrm{ClO}_{4}$ or $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\right.$ tht $\left.)\right]$, according to

The isolation of 1 when mixed with $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]$ is facile because the dinuclear complex is sparingly soluble in diethyl ether, but the solubilities in organic
solvents of 1 and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ are similar and a mixture of both compounds is obtained.

Complexes 1-3 are air- and moisture-stable yellow solids. In acetone solutions they behave as $1: 2$ electrolytes (molar conductivity, about $190 \Omega^{-1} \mathrm{~cm}^{2}$ mol^{-1}). The IR spectra show bands at $1100(\mathrm{~s}, \mathrm{br})$ and $620(\mathrm{~m}) \mathrm{cm}^{-1}$ which are characteristic of the ClO_{4}^{-} anion [12]. The $v\left(\mathrm{Au}-\mathrm{C}_{\text {ylide }}\right)[13,14]$ appears at about $565 \mathrm{~cm}^{-1}$.

The ylidic protons appear as an apparent doublet $\left(\mathrm{CH}_{2}\right.$ cis to tht) or as an apparent triplet $\left(\mathrm{CH}_{2}\right.$ cis to PR_{3}) (Table 1). Other resonances at $\delta=3.3(\mathrm{~m})$ and $2.02(\mathrm{~m})(1), 3.16(\mathrm{~m})$ and $1.94(\mathrm{~m})(2)$ and $3.23(\mathrm{~m})$ and 1.98 (m) (3) ppm are assigned to the tetrahydrothiophene ligand and at $\delta=2.32(\mathrm{~d}, J(\mathrm{PH})=13.5 \mathrm{~Hz})(2)$ and 3.86 (s) (3) ppm, to the methyl group of the phosphines. The ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the ylidic phosphorus always appears as a doublet because of coupling to the phosphorus of the phosphine, which appears as a triplet (see Table 1).

The tht ligand in $\mathbf{1}$ is very weakly coordinated and can therefore be readily displaced by a variety of neutral or anionic ligands. Compiex 1 reacts with ligands L to give another series of dicationic derivatives $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad(\mathrm{~L}=\mathrm{py} \quad(4)$,

Scheme 1. (i) ($\mathrm{L}=$ tht) $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right) \mathrm{PR}_{3}\right]$, $-\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right.$ tht]; (ii) L , -tht; (iii) MX , -(tht $+\mathrm{MClO}_{4}$); (iv) $\left(\mathrm{L}=\mathrm{PPh}_{3}\right)\left[\mathrm{Au}\left(\mathrm{OClO}_{3}\right) \mathrm{PPh}_{3}\right]$, $-\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} ;(v)(\mathrm{X}=\mathrm{Cl}) \mathrm{AgClO}_{4}-\mathrm{AgCl}(v i) \mathrm{OH}_{2}$.
TABLE 1. NMR data

AsPh_{3} (5) or $\mathrm{PPh}_{2} \mathrm{Me}$ (6)) or with salts MX to give monocationic derivatives $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}\right.$ $\mathrm{X}]\left(\mathrm{ClO}_{4}\right)\left(\mathrm{X}=\mathrm{Cl}\right.$ (7a) or $\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$ (8)) (see Scheme 1). In solution, the asymmetric complexes 4-8 are in equilibria with the corresponding symmetric derivatives (Scheme 1) and it is not possible to isolate them.

Similar equilibria are observed when an equimolar mixture of $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right.$ and $\left[\mathrm{MePh}_{2} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{2} \mathrm{Mel}_{3}\left(\mathrm{ClO}_{4}\right)_{2}\right.$ or $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $[\mathrm{Cl}-$ $\mathrm{Au}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuCl}$ in CDCl_{3} are stirred at room temperature.

Consistent with these equilibria the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show the resonances corresponding to the previously described symmetric derivatives [10] and the complexes 4-8, which are in estimated proportions of 45% (4), 56% (5), 62% (6), 19% (7) or 36% (8).

The signals due to the asymmetric derivatives are a doublet for the ylidic phosphorus ($\delta=42.6$ (4), 47.7 (5), 40.6 (7a) and 43.3 (8) ppm) and a triplet for PPh_{3} $(\delta=7.1(J(\mathrm{PP})=14.4 \mathrm{~Hz})(4), 26.4(J(\mathrm{PP})=25.9 \mathrm{~Hz})$ (5), $15.0(J(\mathrm{PP})=21.1 \mathrm{~Hz})(7 \mathrm{a})$ and $17.3(J(\mathrm{PP})=33.0$ $\mathrm{Hz})(8) \mathrm{ppm})$. The ${ }^{3} J\left(\mathbf{P}-\mathrm{P}_{\text {ylide }}\right)$ values involving the ylide phosphorus are in the same range as those previously reported: about 17 Hz for $\left[\mathrm{Au}\left\{\mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{PMe}_{3}\right\} \mathrm{PMe}_{3}\right]$ Cl and related complexes [15,16] and $8.2-13 \mathrm{~Hz}$ for $\left[\mathrm{Au}_{2}\left(\mathrm{CH}_{2} \mathrm{PR}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}\right)\right] \quad(\mathrm{R}=\mathrm{Me}$, Et or $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right)$ [17].

The spectrum of 6 shows an ABX_{2} system, with $\delta \mathrm{A}\left(\mathrm{PPh}_{3}\right)=28.6 \mathrm{ppm}, \delta \mathrm{B}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)=18.0 \mathrm{ppm}$ and $\delta \mathrm{X}\left(\mathrm{PPh}_{2}\right)=47.1 \mathrm{ppm} ;{ }^{3} J(\mathrm{AX})=35.0 \mathrm{~Hz},{ }^{3} J(\mathrm{BX})=33.8$ Hz and $J(\mathrm{AB})\left[{ }^{3} J(\mathrm{P}-\mathrm{Au}-\mathrm{Au}-\mathrm{P})\right]=517.5 \mathrm{~Hz}$. The value of the latter coupling constant is extremely high for two phosphine ligands across a gold-gold bond. This indicates that the gold-gold bond provides good electronic interaction between the two phosphine ligands presumably via the 6 s orbitals of the two gold atoms. Such an interaction may also account for the variation in ${ }^{3} J(\mathrm{P}-$ $\mathrm{P}_{\text {ylide }}$) for the other complexes, where larger values are associated with complexes in which the second gold atom carries a soft ligand such as $\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Me}$, and AsPh_{3}. The soft ligand would increase the electron density on the gold atom to which it is directly bound, some of which would be transmitted through the gold-gold bond to the other gold atom, resulting in an increase in the coupling constant. The same trend is also seen in the Mössbauer data (see below).

The chloro complexes 7a or 7 b react with AgClO_{4} in dichloromethane with precipitation of AgCl and formation of green solutions from which the green complexes 9 a or 9 b are obtained. Complex 9a can also be obtained by reaction of $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}\right.$ $\left.\mathrm{PPh}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ with $\left[\mathrm{Au}\left(\mathrm{OClO}_{3}\right) \mathrm{PPh}_{3}\right]$ (Scheme 1).

Fig. 1. Molecular structure of 10 , with the atom numbering scheme. Hydrogen atoms are omitted for clarity; atom sizes are arbitrary. H bonds are indicated by broken lines.

Complexes 9a and 9b are air- and moisture-stable green solids. It is not possible to confirm the presence of a coordinated perchlorate from the IR spectra, because their bands must overlap with those of the perchlorate anion at $1100(\mathrm{~s}, \mathrm{br})$ and $620(\mathrm{~m}) \mathrm{cm}^{-1}$ [12]. The ${ }^{1} \mathrm{H}$ NMR spectra are as expected (Table 1). For 9 b a signal at $\delta=2.46(\mathrm{~d}, J(\mathrm{PH})=13.02 \mathrm{~Hz}) \mathrm{ppm}$ from the methyl group of the phosphine is observed. The ${ }^{31} \mathrm{P}\left[{ }^{1} \mathrm{H}\right\}$ NMR spectra show two resonances for the two different phosphorus atoms, but both appear as singlets. The ${ }^{3} J\left(P_{\text {ylide }}-P_{\text {phosphine }}\right)$ coupling constant changes from 35.0 Hz when the ligand trans to PPh_{3} is $\mathrm{PPh}_{2} \mathrm{Me}$ (6) to 0 Hz in the perchlorate complex 9 a . In $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuR}\right] \mathrm{ClO}_{4},{ }^{3} \mathrm{~J}(\mathrm{P}-\mathrm{P})$ is 59.1 $\mathrm{Hz}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)$ or $54.5 \mathrm{~Hz}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ [9].

On cooling damp dichloromethane solutions of $9 \mathbf{9 b}$ to $-30^{\circ} \mathrm{C}$, yellow crystals of 10 can be obtained (40% yield). The IR spectrum show bands at 3375 (w, br) ($(\mathrm{(OH})$) and $1640 \mathrm{~cm}^{-1}(\mathrm{w}, \mathrm{br})(\delta(\mathrm{HOH})$) corresponding to coordinated OH_{2}.

The X-ray structure analysis reveals that 10 (Fig. 1) possesses a general geometry typical of gold(II) complexes, the $\mathrm{Au}-\mathrm{Au}$ bond lying across the eight-membered ring. The $\mathrm{Au}-\mathrm{Au}$ bond length is 2.601(1) \AA, which is longer than that found in the symmetrical derivatives $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ [10] (2.579(3) \AA) and $\left[\mathrm{XAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuX}\right](\mathrm{X}$ $=\mathrm{PhCOO}$ or $\left.\mathrm{CH}_{3} \mathrm{COO}\right)[18,19]$ where the distances lie
in the range 2.561(2)-2.592(1) \AA. The factors influencing $\mathrm{Au}(\mathrm{II})-\mathrm{Au}(\mathrm{II})$ bond lengths are not clearly understood; however, it seems that the trans influence or the structural trans effect of the ligands joined to gold act through, rather than on, the $\mathrm{Au}(\mathrm{II})-\mathrm{Au}(\mathrm{II})$ bond $[4,20]$. The $\mathrm{Au}-\mathrm{P}$ bond length is $2.326(2) \AA$ which is shorter than in $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (2.365(6) and $2.384(6) \AA$) and in the asymmetric $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{3}\right] \mathrm{ClO}_{4}$ [9] (2.43(3) \AA), consented with the weaker trans influence of oxygen ligands. However, the $\mathrm{Au}-\mathrm{O}$ distance of $2.300(6) \AA$ is longer than in other gold(II) derivatives with oxygen ligands [$\mathrm{XAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuX}$] $\mathrm{X}=\mathrm{PhCOO}$ or $\mathrm{CH}_{3} \mathrm{COO}$), where the distances fall in the range $2.117(13)-2.144(12) \AA$ and in the only aqua-complex reported $\left[\mathrm{AuMe}_{2}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\left(\mathrm{OH}_{2}\right)\right]$, where $\mathrm{Au}-\mathrm{OH}_{2}$ is $2.157(6)$ A. This is probably caused by the strong trans influence of phosphine ligands and to the expected weakness of a gold-water bond.

The gold atoms exhibit a square-planar geometry (maximum deviation, 5.0°). There are no significant differences between the $\mathrm{Au}-\mathrm{CH}_{2}$ distances and those in the symmetric or asymmetric complexes above mentioned.

Mössbauer data for 1 and related complexes are shown in Table 2. For the asymmetric complexes the spectra were too broad and the peaks were too asymmetric to allow fitting with a simple doublet. However, the two doublets expected overlapped heavily. It was not possible from the spectra alone to decide how the lines should be paired because both nested and overlapping pairs of doublets gave similar statistics. Choices were therefore made to give best agreement with the symmetrical compounds containing the same groups, but it should be noted that the errors on the values given are greater than normal.

The data show the transmission of electronic effects across the gold-gold bond which was postulated above from the NMR coupling-constant data. That is, a soft ligand on one gold atom produces an increase in selectron density on the second atom which is reflected
in the isomer shift. For instance the isomer shifts values for the gold atom bearing the tht ligand in $\left[(\right.$ tht $\left.) \mathrm{Au}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ are $4.17 \mathrm{~mm} \mathrm{~s}^{-1}$ ($\mathrm{L}=$ tht) and $4.65 \mathrm{~mm} \mathrm{~s}^{-1}\left(\mathrm{~L}=\mathrm{PPh}_{3}\right.$). The same effect is seen in $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Au}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right] \mathrm{ClO}_{4}$. On this basis, PPh_{3} is a slightly better donor than $\mathrm{C}_{6} \mathrm{~F}_{5}$.

3. Experimental section

Instrumentation and general experimental techniques were as described earlier [9]. Mössbauer spectra were obtained with source (${ }^{197} \mathrm{Pt}$) and sample immersed in liquid helium. Isomer shifts are quoted relative to gold foil. The spectra were fitted with pairs of Lorentzian lines; for two-doublet spectra, it was necessary to constrain each doublet to be symmetrical. All the reactions were performed at room temperature.
3.1. $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}(\mathrm{tht})\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{PR}_{3}=\right.$ PPh_{3} (1), $\mathrm{PPh}_{2} \mathrm{Me}$ (2), or $\mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}$ (3))
(a) To a solution of $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}\right.$ $\left.\mathrm{PPh}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}[10](0.154 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right) \mathrm{tht}\right] \mathrm{ClO}_{4}[21](0.064$ $\mathrm{g}, 0.1 \mathrm{mmol})$ and the mixture was stirred for 30 min . Concentration of the solution to about $5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) led to the precipitation of a mixture of complex 1 and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$.
(b) To a solution of $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}\right.$ $\left.\mathrm{PPh}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}[10](0.154 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added [$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right.$)tht] [22] ($0.045 \mathrm{~g}, 0.1$ mmol) and the mixture was stirred for 3 h . Concentration of the solution to about $5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) led to the precipitation of $\mathbf{1}$. By concentration of the diethyl ether solution to about 5 cm^{3} and addition of hexane, $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{PPh}_{3}\right]$ was obtained.
(c) To a solution of [(tht) $\mathrm{Au}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{Au}-$ (tht) $\left(\mathrm{ClO}_{4}\right)_{2}[10](0.120 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added [$\mathrm{Ag}\left(\mathrm{OClO}_{3}\right) \mathrm{PR}_{3}$] [23] [0.1 $\mathrm{mmol}, \mathrm{PR}_{3}=\mathrm{PPh}_{3}(0.047 \mathrm{~g}), \mathrm{PPh}_{2} \mathrm{Me}(0.041 \mathrm{~g})$ or

TABLE 2. ${ }^{197} \mathrm{Au}$ Mössbauer data for $\left[\mathrm{LAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]\left(\mathrm{ClO}_{4}\right)_{n}$

L	\mathbf{L}^{\prime}	n	$\mathrm{Au}-\mathrm{C}_{6} \mathrm{~F}_{5}$		$\mathrm{Au}^{\mathbf{- P P h}} 3$		Au-tht	
			$\begin{aligned} & \text { IS } \mathrm{a}, \mathrm{~b} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { QS } \\ & \left(\mathrm{mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \overline{\text { IS }^{\mathrm{a}, \mathrm{~b}}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{QS}^{\mathrm{b}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{IS}^{\mathrm{a}, \mathrm{~b}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \hline \text { QS }^{\mathrm{b}} \\ & \left(\mathrm{~mm} \mathrm{~s}^{1}\right) \end{aligned}$
tht	tht	2					4.17	6.72
PPh_{3}	PPh_{3}	2			4.97	7.41		
$\mathrm{C}_{6} \mathrm{~F}_{5}$	tht	1	4.55	7.60			4.65	6.50
$\mathrm{C}_{6} \mathrm{~F}_{5}$	PPh_{3}	1	4.85	6.90	4.85	7.90		
PPh_{3}	tht	2			4.75	7.80	4.60	6.64

IS, isomer shift; QS, quadrupole splitting. ${ }^{\mathbf{a}}$ Relative to gold metal. ${ }^{\text {b }}$ Errors are $\pm 0.03 \mathrm{~mm} \mathrm{~s}^{-1}$ for doublets, and about $\pm 0.06 \mathrm{~mm} \mathrm{~s}{ }^{-1}$ for overlapping doublets.

TABLE 3. Atomic coordinates and equivalent isotropic displacement parameters for 10 where $U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

	$x \times 10^{4}$	$y \times 10^{4}$	$z \times 10^{4}$	$\begin{aligned} & U_{\text {eq }} \\ & \left(\AA^{2} \times 10^{3}\right) \end{aligned}$
Au(1)	6345.2(3)	5712.6(2)	4999.0(2)	23.8(1)
$\mathrm{Au}(2)$	6606.2(3)	5939.1(2)	6371.9(2)	22.5(1)
$\mathbf{P}(1)$	6927(2)	6150.6(10)	7593.6(12)	23.4(5)
$\mathbf{P}(2)$	7063(2)	4558.3(10)	6000.5(12)	24.3(5)
P(3)	6875(2)	7063.9(10)	5294.7(12)	24.9(5)
$\mathrm{Cl}(1)$	6736(2)	6486.6(11)	2259.8(12)	36.6(5)
$\mathrm{Cl}(2)$	6762(2)	3804.5(11)	3316.2(13)	37.3(5)
O(1)	$7136(8)$	5876(4)	2202(5)	$70(3)$
O(2)	7617(7)	6910(4)	2294(5)	65(2)
O(3)	6205(7)	6538(4)	2915(4)	54(2)
O(4)	5974(7)	6625(4)	1673(4)	62(2)
O(5)	6655(12)	4439(5)	3124(6)	113(4)
O(6)	7713(6)	3757(5)	3794(4)	66(2)
O(7)	$5830(8)$	3649(7)	3641(6)	113(4)
O(8)	6866(8)	3477(5)	2681(5)	82(3)
$\mathrm{O}(9)$	6204(6)	5525(3)	3777(3)	38(2)
$\mathrm{O}(10)$	3865(29)	7211(17)	1188(20)	366(18)
C(1)	6279(7)	5009(4)	6538(5)	27(2)
C(2)	6743(8)	4783(4)	5100(5)	29(2)
C(3)	5838(7)	6624(4)	4857(5)	26(2)
C(4)	6847(8)	6891(4)	6224(5)	30(2)
C(5)	6059(8)	6753(4)	7878(5)	35(2)
C(11)	6688(8)	5489(4)	8145(5)	32(2)
C(12)	7556(9)	5128(4)	8425(5)	$39(2)$
C(13)	7344(11)	4596(5)	8778(6)	$50(3)$
C(14)	6289(11)	4413(5)	8835(6)	54(3)
C(15)	5425(11)	4756(5)	8558(6)	51(3)
C(16)	5620(9)	5301(5)	8212(5)	38(2)
C(21)	8342(7)	6368(4)	7795(5)	27(2)
C(22)	9115(8)	6210(4)	7325(5)	35(2)
C(23)	10194(9)	6369(5)	$7480 \times 6)$	46(2)
C(24)	10491(10)	6691(5)	8117(7)	53(3)
C(25)	9736(9)	6845(5)	8583(6)	50(3)
C(26)	8659(9)	6683(5)	8418(6)	42(2)
C(31)	6842(7)	3750(4)	6143(5)	29(2)
C(32)	7068(8)	3334(4)	5607(5)	35(2)
C(33).	6942(8)	2710(4)	5721(6)	39(2)
O(34)	6594(7)	2522(5)	6361(5)	34(2)
C(35)	6333(9)	2908(4)	6883(6)	43(2)
C(36)	6453(8)	3534(4)	6774(5)	37(2)
C(41)	8482(7)	4698(4)	6260(5)	29(2)
$\mathrm{C}(42)$	8939(8)	4445(4)	6904(5)	34(2)
$\mathrm{C}(43)$	10034(8)	4540(5)	7129(6)	42(2)
C(44)	10674(8)	4873(5)	6717(6)	42(2)
C(45)	10233(8)	5131(4)	6083(6)	39(2)
C(46)	9129(8)	5047(4)	5841(5)	33(2)
C(51)	6744(8)	7872(4)	5144(5)	31(2)
C(52)	7663(9)	8252(5)	5273(6)	42(2)
C(53)	7518(11)	8884(5)	5176(7)	57(3)
C(54)	6519(11)	9155(4)	4968(5)	45(2)
C(55)	5651(11)	8773(5)	4856(5)	48(3)
C(56)	5731(9)	8126(5)	4930(5)	40(2)
C(61)	8160(7)	6862(4)	4965(5)	30(2)
C(62)	8178(8)	6809(4)	4228(5)	35(2)
C(63)	9134(9)	6677(5)	3919(6)	42(2)
C(64)	10073(9)	6594(5)	4362(6)	45(2)
C(65)	10065(8)	6629(5)	5099(7)	46(2)
C(66)	$9096(8)$	6777(5)	5403(6)	39(2)

TABLE 3. (continued)

	$x \times 10^{4}$	$y \times 10^{4}$	$z \times 10^{4}$	U_{cq} $\left(\AA^{2} \times 10^{3}\right)$
$\mathrm{C}(6)$	$8190(11)$	$281(6)$	$6352(7)$	$65(4)$
$\mathrm{Cl}(3)$	$7233(4)$	$740(2)$	$5858(2)$	$90.1(12)$
$\mathrm{Cl}(4)$	$9358(3)$	$177(2)$	$5919(3)$	$91.4(13)$
$\mathrm{C}(7)$	$8605(16)$	$2125(10)$	$3533(11)$	$116(7)$
$\mathrm{Cl}(5)$	$9826(5)$	$1966(2)$	$3157(3)$	$106(2)$
$\mathrm{Cl}(6)$	$8724(6)$	$1851(3)$	$4436(4)$	$167(3)$

$\left.\mathrm{P}\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}(0.056 \mathrm{~g})\right]$. After stirring for 20 min at room temperature in the dark, the precipitated $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right.$ tht] was filtered off and washed with dichloromethane ($3 \times 5 \mathrm{~cm}^{3}$). Concentration of the filtrate to about $5 \mathrm{~cm}^{3}$ and addition of diethyl ether (20 cm^{3}) gave 1-3 as yellow solids.

1: yield, 95%. Anal. Found: C, 43.5; H, 3.55. $\mathrm{C}_{50} \mathrm{H}_{51^{-}}$ $\mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{P}_{3} \mathrm{~S}$ calc.: $\mathrm{C}, 43.85 ; \mathrm{H}, 3.75 \%$.

2: yield, 93%. Anal. Found: C, 41.55; H, 3.6. $\mathrm{C}_{45} \mathrm{H}_{49^{-}}$ $\mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{P}_{3} \mathrm{~S}$ calc.: C, 41.35 ; $\mathrm{H}, 3.8 \%$.

3: yield: 95\%. Anal. Found: C, 43.75; H, 3.8. $\mathrm{C}_{53} \mathrm{H}_{57^{-}}$ $\mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{O}_{11} \mathrm{P}_{3} \mathrm{~S}$ calc.: $\mathrm{C}, 43.6 ; \mathrm{H}, 3.95 \%$.
3.2. $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad(\mathrm{~L}=\mathrm{py}$ (4), AsPh_{3} (5) or $\mathrm{PPh}_{2} \mathrm{Me}$ (6))
(a) To a solution of $1(0.137 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added py ($1 \mathrm{~cm}^{3}$ of a solution $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane), $\mathrm{AsPh}_{3}(0.031 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $\mathrm{PPh}_{2} \mathrm{Me}\left(1 \mathrm{~cm}^{3}\right.$ of a solution $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane) and the mixture was stirred for 15 min . The solution was evaporated to about $5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) led to precipitation of a mixture of the symmetrical derivatives, $\left[\mathrm{Ph}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2}\right.$ $\mathrm{AuPPh} 3]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{LAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuL}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{~L}=\mathrm{py}, \mathrm{AsPh}_{3}\right.$ or $\left.\mathrm{PPh}_{2} \mathrm{Me}\right)$, and 4-6.
3.3. $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuX}^{2} \mathrm{ClO}_{4}\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.\right.$; $X=\mathrm{Cl}(7 a)$ or $\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}(8) ; \mathrm{PR}_{3}=P \mathrm{Ph} h_{2} \mathrm{Me} ; X$ $=C l(7 b))$
(a) To a solution of $1(0.137 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added a solution of NaCl $(0.006 \mathrm{~g}, 0.1 \mathrm{mmol})$ or $\mathrm{NaS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2} .(0.029,0.1$ mmol) in water ($10 \mathrm{~cm}^{3}$) and the mixture was stirred for 15 min . The dichloromethane layer was removed using a separating funnel and dried with anhydrous magnesium sulphate ($1-2 \mathrm{~g}$). The filtered solution was evaporated to about $5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) led to the precipitation of a mixture of 7 a or 8 and the symmetrical derivatives $\left[\mathrm{Ph}_{3} \mathrm{PAu}-\right.$
$\left.\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPPh}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{XAu}\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuX}\right]\left(\mathrm{X}=\mathrm{Cl}\right.$ or $\left.\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right)$.
(b) To a solution of $\left[\mathrm{ClAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuCl}\right]$ [4] ($0.045 \mathrm{~g}, 0.05 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) was added $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPR}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ [10] $\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}(0.077 \mathrm{~g}, 0.05 \mathrm{mmol})\right.$ or $\mathrm{PPh}_{2} \mathrm{Me}$ ($0.071 \mathrm{~g}, 0.05 \mathrm{mmol}$)) and the mixture was stirred for 15 \min. Evaporation of the solution to about $2 \mathrm{~cm}^{3}$ and addition of diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ led to the precipitation of a mixture of $\mathbf{7 a}, \mathbf{7 b}$ and the symmetrical derivatives $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPR}{ }_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{PR}_{3}=\right.$ PPh_{3} or $\left.\mathrm{PPh}_{2} \mathrm{Me}\right)$ and $\left[\mathrm{XAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuX}\right]$.

3.4. $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuOClO}{ }_{3}\right] \mathrm{ClO}_{4} \quad\left(\mathrm{PR}_{3}=\right.$ PPh_{3} (9a) or $\mathrm{PPh}_{2} \mathrm{Me}$ (9b))

(a) To a solution of $1(0.137 \mathrm{~g}, 0.1 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added a solution of $\left[\mathrm{Au}\left(\mathrm{OClO}_{3}\right) \mathrm{PPh}_{3}\right][24]\left(0.1 \mathrm{mmol}\right.$ in $10 \mathrm{~cm}^{3}$ of dichloromethane). After 30 min , the solution was evaporated to about $20 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) led to the precipitation of a green solid (9a) which was washed with a mixture of 40% dichloromethane- 60% diethyl ether to remove $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$.
(b) To a solution of $\left[\mathrm{ClAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuCl}\right]$ [4] ($0.045 \mathrm{~g}, 0.05 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) was added $\left[\mathrm{R}_{3} \mathrm{PAu}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{AuPR}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ [10] $\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}(0.077 \mathrm{~g}, 0.05 \mathrm{mmol})\right.$ or $\mathrm{PPh}_{2} \mathrm{Me}$ ($0.071 \mathrm{~g}, 0.05 \mathrm{mmol}$) and $\mathrm{AgClO}_{4}(0.021 \mathrm{~g}, 0.1 \mathrm{mmol})$).

TABLE 4. Sclected bond lengths (\AA) and angles (${ }^{\circ}$) for 10

Bond lengths			
$\mathrm{Au}(1)-\mathrm{C}(2)$	$2.088(9)$	$\mathrm{Au}(1)-\mathrm{C}(3)$	$2.090(8)$
$\mathrm{Au}(1)-\mathrm{O}(9)$	$2.308(7)$	$\mathrm{Au}(1)-\mathrm{Au}(2)$	$2.6013(7)$
$\mathrm{Au}(2)-\mathrm{C}(1)$	$2.095(8)$	$\mathrm{Au}(2)-\mathrm{C}(4)$	$2.116(9)$
$\mathrm{Au}(2)-\mathrm{P}(1)$	$2.326(2)$	$\mathrm{P}(1)-\mathrm{C}(5)$	$1.799(9)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.809(9)$	$\mathrm{P}(1)-\mathrm{C}(21)$	$1.810(9)$
$\mathrm{P}(2)-\mathrm{C}(1)$	$1.749(9)$	$\mathrm{P}(2)-\mathrm{C}(2)$	$1.762(9)$
$\mathrm{P}(2)-\mathrm{C}(41)$	$1.795(9)$	$\mathrm{P}(2)-\mathrm{C}(31)$	$1.805(9)$
$\mathrm{P}(3)-\mathrm{C}(3)$	$1.742(10)$	$\mathrm{P}(3)-\mathrm{C}(4)$	$1.777(9)$
$\mathrm{P}(3)-\mathrm{C}(51)$	$1.789(9)$	$\mathrm{P}(3)-\mathrm{C}(61)$	$1.796(9)$
Bond angles			
$\mathrm{C}(2)-\mathrm{Au}(1)-\mathrm{C}(3)$	$175.8(4)$	$\mathrm{C}(2)-\mathrm{Au}(1)-\mathrm{O}(9)$	$85.1(3)$
$\mathrm{C}(3)-\mathrm{Au}(1)-\mathrm{O}(9)$	$92.7(3)$	$\mathrm{C}(2)-\mathrm{Au}(1)-\mathrm{Au}(2)$	$95.0(2)$
$\mathrm{C}(3)-\mathrm{Au}(1)-\mathrm{Au}(2)$	$87.4(2)$	$\mathrm{O}(9)-\mathrm{Au}(1)-\mathrm{Au}(2)$	$177.1(2)$
$\mathrm{C}(1)-\mathrm{Au}(2)-\mathrm{C}(4)$	$176.7(4)$	$\mathrm{C}(1)-\mathrm{Au}(2)-\mathrm{P}(1)$	$93.7(2)$
$\mathrm{C}(4)-\mathrm{Au}(2)-\mathrm{P}(1)$	$85.4(2)$	$\mathrm{C}(1)-\mathrm{Au}(2)-\mathrm{Au}(1)$	$87.3(2)$
$\mathrm{C}(4)-\mathrm{Au}(2)-\mathrm{Au}(1)$	$93.7(2)$	$\mathrm{P}(1)-\mathrm{Au}(2)-\mathrm{Au}(1)$	$177.26(6)$
$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(11)$	$106.5(4)$	$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{C}(21)$	$109.3(5)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$106.8(4)$	$\mathrm{C}(5)-\mathrm{P}(1)-\mathrm{Au}(2)$	$112.2(3)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{Au}(2)$	$112.2(3)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{Au}(2)$	$109.6(3)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(2)$	$107.5(4)$	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(41)$	$108.6(4)$
$\mathrm{C}(2)-\mathrm{P}(2)-\mathrm{C}(41)$	$110.1(4)$	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	$111.5(4)$
$\mathrm{C}(2)-\mathrm{P}(2)-\mathrm{C}(31)$	$112.8(4)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(31)$	$106.3(4)$
$\mathrm{C}(3)-\mathrm{P}(3)-\mathrm{C}(4)$	$105.5(4)$	$\mathrm{C}(3)-\mathrm{P}(3)-\mathrm{C}(51)$	$114.6(4)$
$\mathrm{C}(4)-\mathrm{P}(3)-\mathrm{C}(51)$	$110.7(4)$	$\mathrm{C}(3)-\mathrm{P}(3)-\mathrm{C}(61)$	$109.5(4)$
$\mathrm{C}(4)-\mathrm{P}(3)-\mathrm{C}(61)$	$111.8(5)$	$\mathrm{C}(51)-\mathrm{P}(3)-\mathrm{C}(61)$	$104.9(4)$

The mixture was stirred for 90 min in the dark. The precipitated AgCl was filtered off and washed with dichloromethane ($3 \times 5 \mathrm{~cm}^{3}$). Concentration of the filtrate to about $5 \mathrm{~cm}^{3}$ and addition of diethyl ether (20 cm^{3}) led to the precipitation of 9 a and 9 b as green solids.

9a: yield, 89\%. Anal. Found: C, 43.45; H, 3.7. $\mathrm{C}_{46} \mathrm{H}_{43}{ }^{-}$ $\mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{P}_{3}$ calc.: C, 43.1; H, 3.4\%.

9b: yield, 83%. Anal. Found: C, 40.1; $\mathrm{H}, 3.15 . \mathrm{C}_{41}{ }^{-}$ $\mathrm{H}_{41} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{P}_{3}$ calc.: $\mathrm{C}, 40.4 ; \mathrm{H}, 3.4 \%$.

3.5. Crystal structure determination of compound 10

Crystal data: $\mathrm{C}_{43} \mathrm{H}_{49} \mathrm{Au}_{2} \mathrm{Cl}_{6} \mathrm{O}_{10} \mathrm{P}_{3} ; M_{\mathrm{r}} 1407.3$; monoclinic, space group, $P 2_{1} / c ; a=12.283(3), b=$ 21.789(6) and $c=18.653(4) \mathrm{A}, \quad \beta=94.81(2)^{\circ} ; \quad V=$ $4974(2) \AA^{3} ; Z=4 ; D_{\text {calc }}=1.88 \mathrm{Mg} \mathrm{m}^{-3} ; F(000)=$ 2728; $\lambda($ Mo $\mathrm{K} \alpha)=0.71073 \AA ; \mu=6.4 \mathrm{~mm}^{-1}: T=$ $-95^{\circ} \mathrm{C}$.

3.6. Data collection and reduction

A yellow tablet $0.5 \times 0.4 \times 0.2 \mathrm{~mm}$, obtained by cooling a concentrated damp dichloromethane solution of 9 b at $-30^{\circ} \mathrm{C}$, was mounted on a glass fibre in inert oil. 11080 intensities were measured on a Siemens R3 diffractometer with an LT-2 low temperature attachment using monochromated Mo $\mathrm{K} \alpha$ radiation ($2 \theta_{\max }=$ 50°). An absorption correction based on Ψ scans was applied, with transmission factors $0.39-0.55$. Merging equivalents gave 8791 reflections ($\mathrm{R}_{\text {int }}=0.038$), which were used for all calculations (program system shelxl-92 [25]). Cell constants werc refincd from setting angles of 50 reflections in the 2θ range $20-23^{\circ}$.

3.7. Structure solution and refinement

The structure was solved by the heavy-atom method and refined on F^{2}. The coordinated oxygen atom $O(9)$, initially unexpected, was identified on the basis of peak height and short contacts to perchlorate oxygen atoms ($\mathrm{O}(9) \ldots \mathrm{O}(3), 2.73 \AA ; \mathrm{O}(9) \ldots \mathrm{O}(5), 2.74 \AA$), although the water H could not be identified (one peak at a suitable position was rather large for a hydrogen atom, at 2 electrons \AA^{-3}). A further oxygen atom, $O(10)$, was tentatively identified as water because it too makes an H bonding contact to perchlorate $(\mathrm{O}(10) \ldots \mathrm{O}(4), 2.96$ \AA), although the high displacement parameter may indicate partial occupation. Two ordered dichloromethane molecules were also identified. Anisotropic refinement (except $\mathrm{O}(10)$ and dichloromethane carbon) with riding H atoms proceeded to $w R\left(F^{2}\right)=0.108$ (all reflections), $R(F>4 \sigma(F))=0.042$. The weighting scheme was $w^{-1}=\sigma^{2}\left(F_{0}^{2}\right)+(0.0286 P)^{2}+65.71 P$, where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3563$ parameters, $S=1.09$,
maximum $\Delta / \sigma=0.06$; maximum $\Delta \rho=2.2$ electrons \AA^{-3}.

Atomic positional parameters for 10 are listed in Table 3 and Table 4 contains selected bond lengths and angles. All data have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgments

We thank the Dirección General de Investigación Cientifica y Técnica (PB91-0122) and the Fonds der Chemischen Industrie for financial support.

References

1 H. Schmidbaur, Acc. Chem. Res., 8 (1975) 62.
2 H. Schmidbaur, Angew. Chem., Int. Edn. Engl., 15 (1976) 728.
3 H. Schmidbaur, J.R. Mandl, A. Frank and G. Huttner, Chem. Ber., 109 (1976) 466.
4 J.D. Basil, H.H. Murray, J.P. Fackler, Jr., J. Tocher, A.M. Mazany, B. Trzcinska-Bancroft, H. Knachel, D. Dudis, T.J. Delord and D.O. Marler, J. Am. Chem Soc., 107 (1985) 6908.

5 H.H. Murray, J.P. Fackler, Jr., A.M. Mazany, L.C. Porter, J. Shain and L.R. Falvello, Inorg. Chim. Acta, 114 (1986) 171.
6 H.H. Murray, A.M. Mazany and J.P. Faclker, Jr., Organometallics, 4 (1985) 154
7 H.H. Murray, J.P. Fackler, Jr., and B. Trzcinska-Bancroft, Organometallics, 4 (1985) 1633.

8 H. Schmidbaur, C. Hartmann, G. Reber and G. Müller, Angew. Chem., Int. Edn. Engl., 26 (1987) 1146.
9 A. Laguna, M. Laguna, J. Jiménez, F.J. Lahoz and E. Olmos, J. Organomet. Chem., 435 (1992) 235.
10 R. Usón, A. Laguna, M. Laguna, J. Jiménez and P.G. Jones, J. Chem. Soc., Dalton Trans., (1991) 1361.
11 S. Komiya, J.C. Huffman and J.K. Kochi, Inorg. Chem., 16 (1977) 2138.

12 B.J. Hathaway and A.E. Underhill, J. Chem. Soc., (1961) 3091.
13 H. Schmidbaur and R. Franke, Inorg. Chim. Acta, 13 (1975) 85.
14 R. Usón, A. Laguna, M. Laguna, A. Usón and M.C. Gimeno, Inorg. Chim. Acta, 114 (1986) 91.
15 H. Schmidbaur and R. Franke, Angew. Chem. Int. Edn. Engl., 12 (1973) 416.

16 H. Schmidbaur and R. Franke, Chem. Ber., 108 (1975) 1321.
17 H. Schmidbaur, J.R. Mandl, J.M. Baset, G. Blanchke and B. Ziemmer-Gasser, Chem. Ber., 114 (1981) 433.
18 L.C. Porter and J.P. Fackler, Jr., Acta Crystallogr., Sect. C, 42 (1986) 1128.

19 L.C. Porter and J.P. Facker, Jr., Acta Crystallogr., Sect. C, 42 (1986) 1646.

20 J.P. Fackler, Jr., and J.D. Basil, Organometallics, 1 (1982) 871.
21 R. Usón, A. Laguna, M. Laguna, J. Jiménez, M.P. Gómez, A. Sainz and P.G. Jones, J. Chem. Soc., Dalton Trans., (1990) 3457.
22 R. Usón, A. Laguna and J. Vicente, J. Chem. Soc., Chem. Commun., (1976) 353.
23 F.A. Cotton, L.R. Falvello, R. Usón, J. Forniés, M. Tomás, J.M. Casas and I. Ara, Inorg. Chem., 26 (1987) 1366.
24 R. Usón, P. Royo, A. Laguna and J. García, Rev. Acad. Cienc. Zaragoza, 28 (1973) 67.
25 G.M. Sheldrick, shelxL-93 A Program for Crystal Structure Refinement (pre-release version), University of Göttingen, Göttingen, 1992.

[^0]: Correspondence to: Professor A. Laguna.

